

    
      
          
            
  
Welcome to Git Workshop Part 3 on Documentation!

Here are the basic git concepts that we covered in the first workshop, that will
be needed in today’s workshop. Feel free to take a look, in case you forgot
something.


Git Basics



	Creating a Repository
	Create Project on GitLab

	Use Project Template

	Sync Local and Remote Repository





	Git Workflow
	Idea

	Instructions












Documentation Basics

Today we will learn how to write documentation and publish it on the web. At
first we will start with the basics of documentation.



	Documentation 101
	Readme





	RestructuredText
	Example

	Idea

	Properties












Deploy Documentation

The second session will be about publishing your documentation on the web.



	Sphinx
	Why shall we use it?

	Quick Start

	Example





	Continuous Deployment
	Idea

	Purpose

	Webhook





	Read the Docs
	Setup Read the Docs

	Build Documentation

	Add Webhook












Docstring

And the third session will be about documenting more detailed code interfaces.



	Doc-Strings
	Types of Docstrings

	Detailed Docstring

	Autodoc












Exercises

Here you can find some tasks to practise the ideas introduced above.



	Task 0: Create a new repository

	Task 1: Readme

	Task 2: Creating Sphinx Documentation
	Setup Sphinx

	Landing Page





	Task 3: Read the Docs

	Task 4: Docstrings










Indices and tables


	Index


	Search Page








            

          

      

      

    

  

    
      
          
            
  
Creating a Repository


Steps


	Creating a Repository


	Create Project on GitLab


	Use Project Template


	Sync Local and Remote Repository










The basic idea is to create a repo on the remote server. Then we create some
content for the repository locally and finally we want to sync this content to
the remote server.


Create Project on GitLab

First of all you want to create a repository on GitLab/GitHub. Therefore, go to
the URL of your GitLab Server, i.e.
https://git.tu-berlin.de/kiwi-git-workshops.   Then you click on
New Project and select Create blank project. Afterwards you may choose a
name for your repository

[image: ../_images/new_project.png]
and click Create project.
Now we created an empty project on the remote server.




Use Project Template

Now we create a folder with some code on our local machine.
Therefore we use a template via the following steps:


	Open a terminal


	Install the python package cookiecutter

pip3 install cookiecutter







	Use cd to navigate to the directory that you want to start a repository.

cd path/to/your/git-projects







	Create your python package with

cookiecutter https://github.com/spirousschuh/cookiecutter-git-workshop-documentation







	Specify the template parameter. Now you will see

author_name [Josephine Doe]:





This is a question. “What should be the name of the author?” and requires
your input. You can either press Enter, then the author_name is set to the
default option Josephine Doe. Or you can enter another name.



	Answer the questions that will be prompted to you or press Enter to choose
the default value. You do not need to reveal
your real data, as it is a toy project anyway. But you could choose answers
like these:

[image: ../_images/questions.png]
Pay attention at the third question. The answer to that question will be
the name of the folder where you can find your package later.

Now we created a folder of code locally.








Sync Local and Remote Repository

In this section we will syncronize our local folder with the remote git server.
Right know they do not know about each other.


	Go the folder that you just created in the last step

cd my_image_package





The name of the folder corresponds to your answer to the question

package_name [git_workshop_testing]: my_image_package







	Go back to your browser and open the remote server url
(https://git.tu-berlin.de). Then go to the project
that you just created in the section Create Project on GitLab.
As it is an empty project the landing page should look like this:

[image: ../_images/project_setup.png]


	Follow the step that are displayed under Git global setup (first red box)
one by one, i.e. you copy each line to your terminal and press Enter.


	Follow the steps you find in the section Push an existing folder
(second red box). You need to replace cd existing_folder with the
project-name you chose in step 6. In case you forgot the package name you
can check it with ls -l which displays the content of the current
directory.
(if you get an error like error: src refspec main does not match any you
need to replace main with master)


	Install your new package in editable mode

pip install -e .







	Go to your project webpage https://git.tu-berlin.de/your_name/your_project.
When you see a basic README.md file you succeeded.










            

          

      

      

    

  

    
      
          
            
  
Git Workflow


Idea

This is a concise manual to a basic Git workflow. You can find more details
here [https://guides.github.com/introduction/flow/]. For each step you can
find instructions how to follow that workflow using PyCharm. There is different
ways to achieve the same goal without PyCharm. Once you are familiar with the
basic concepts you can use any tool you like.




Instructions

Once you have an idea what you want to achieve the following steps will help you
to get there.


Steps


	Update Local


	Create Branch


	Add Commits


	Push Branch


	Merge Request


	Discussion


	Merge Branch







Update Local

First we want to make sure to use the newest version of the repositories main
branch. Therefore we click on the button in the bottom right corner next to the
patlock. Then we see a context menue like this that displays all the local
branches.

[image: ../_images/checkout_branch.png]
Click on the main/master branch and choose “Checkout” in the second context
menue to switch to the main/master branch.
Now we need to make sure that your local main/master branch is up to date with
the upstream main/master. Therefore we pull the newest state from upstream. In
the upper left corner we can find the menue bar, click on “Git” and choose pull
in the pull down menue.

[image: ../_images/git_pull.png]



Create Branch

Now we create a branch to implement our feature. In order to do so move your
cursor to the buttom right corner and click on your current branch name,
which should be main/master, next to the patlock.

[image: ../_images/create_new_branch.png]
Within the context menue click on “New Branch” and enter a branch name that
relates to your feature idea.




Add Commits

Now you need to add, change or delete some content in the repository to achieve
your goal. For instance you want to add a new file “Tasks.md”. Then you make a
right click onto the folder that should contain your new file.

[image: ../_images/new_file.png]
In the context menue select “new” and “File” and enter the filename in the
consecutive prompt. Then PyCharm wants to know if Git should look after your
new file.

[image: ../_images/add_to_git.png]
Normally that is a good idea and you shall choose “Add”.




Push Branch

Now you want to push the branch with your changes to the upstream server. This
way you create an identical copy of your local branch on the server. To do so

[image: ../_images/git_push.png]
go to the upper left corner where you can find the menue bar and click on Git
and choose push in the pull down menue.




Merge Request

Now that you pushed your local branch to the upstream server, you want to create
a merge request on the server. Therefore open your browser and go to
https://git.tu-berlin.de/your_name/your_project/. On the left hand side you
click on Merge Requests. Then you get to a page that looks like this:

[image: ../_images/merge_request.png]
Here click on Create merge request to create a request to merge your_branch
(here: “basic_description”) into main/master. Then you can add a description

[image: ../_images/merge_request2.png]
and assign a reviewer. Finally submit you merge request.




Discussion

Now the reviewer of the merge request checks your changes and gives you
feedback. After some discussion you might want to go back to step 3 and add
additional commits to change the current state. For the sake of practising
some interations in the workshop, you can just approve your own merge requests
and continue.




Merge Branch

When all discussions are done and you are sure that your changes improve the
main/master branch, it is time to merge your branch by

[image: ../_images/final_merge.png]
clicking on Merge.

Now master on the upstream server is newer than your local branch and its time
to start all over again (Update Local).









            

          

      

      

    

  

    
      
          
            
  
Documentation 101

The most basic piece of documentation is a Readme.


Readme

When creating a repository it is a good practise to add a Readme right from
the start. Its the first point of touch with your repository.


Content

A basic Readme should contain the following:


	the repository’s purpose


	an installation guide


	a small code snippet of a typical use-case


	a note on contribution


	how you liscense your project (default choice: https://choosealicense.com/licenses/mit/)







Purpose

I advice you to write documentation, because


	essential if someone else will start using your software


	you reflect your own design choices while explaining them to the user


	in case of multiple users its the most efficient way to handle questions


	great lookup for yourself












            

          

      

      

    

  

    
      
          
            
  
RestructuredText

The standard file format that is used in python to write technical
documentation is RestructuredText.


Example

In RestructuredText what you type is not what you get. For instance the
following snippet

Features
________

#. Be awesome
#. Make things faster

Installation
____________

Install **my_project** by running:

.. code-block::

   pip install my_project





is rendered to look like the following:


Features


	Be awesome


	Make things faster







Installation

Install my_project by running:

pip install my_project





Editing a document is not as straight forward as standard Word Processors, like
Libre Office. The idea of using it for documentation is:






Idea

Here some good features of reStructuredText:


	automatic formatting


	changes are traceable with git


	auto generated content, i.e. table of content, links


	Speed up writing documentation (once you are familiar with RestructuredText)







Properties

And some things to keep in mind when writing your documentation


	indention is important


	blank lines are very important


	3 spaces vs. 4 spaces in python


	supports



	highlighting


	lists


	table


	all sorts of blocks


	images


	hyperlinks


	citations


	footnotes


	much more









	can create multiple output formats



	html


	LaTEX (pdf)


	ePub


	manual pages


	plain text











For a more detailed introduction on RestructuredText, please take a look at
this documentation [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html].







            

          

      

      

    

  

    
      
          
            
  
Sphinx

Sphinx [https://www.sphinx-doc.org/en/master/] is a tool to build any kind
of documenation.


Why shall we use it?


	converts reStructuredText to an output format, i.e. html


	creates links etc. within and amount documents


	supports many customizations


	native python documentation tool widely adapted



	NumPy [https://numpy.org/doc/stable/reference/]


	SciPy [https://docs.scipy.org/doc/scipy/reference/]


	scikit-learn [https://scikit-learn.org/stable/]









	change documentation via git







Quick Start

If you want to add documenation to a project, please checkout
this guide [https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html#quick-start].




Example

Now you can start writing actual documentation. Each html page corresponds
to one .rst file. So image we want to document a coffee machine.


index.rst

Congrats for buying our new super awesome coffee-machine. Here we provide
more details on the following topics.

.. toctree::
   :maxdepth: 2
   :caption: Table of Content

   safety
   quickstart







This table of content will do three things:


	
	create links to the heading in saftety.rst and quickstart.rst right
	there up to level 2







	create a navigation menu on the side


	tell sphinx that these documents form a joint assemble




To complete the example we have the two missing files linked in the table of
content.


safety.rst

Read everything very very carefully.

Safety
======

This coffee machine can only be installed by an electrician. If you do
otherwise, you loose all warranty.


Responsibility (level 1)
========================

We assure you that we don't take any responsibility. Never.

Exception (level 2)
___________________

No exceptions.

Exception (level 3)
*******************

Really?







So the last heading Exception (level 3) will not appear in the table of
content of the index page. All other heading will.


quickstart.rst

Instructions
============

Follow the following steps:

#. Take the machine out of its box.
#. PLug the cable into the socket.
#. Switch it on.







Afterwards please take a look at the conf.py file. This is the place to go
to when customizing your documentation.







            

          

      

      

    

  

    
      
          
            
  
Continuous Deployment


Idea


	Once a Merge Request is merged everything happens automatically


	typical use-cases are:



	releasing a new version


	building the corresponding apps


	building new documentation














Purpose


	allow developers to be lazy


	automated processes are less error prone


	maintain documentation in Git







Webhook

A Webhook is an Api Endpoint that you can call in order to make a change
on a website.


Simple Example

When you post a comment on Reddit, you trigger a webhook as well. In the
background some code puts your comment into some reddit database. Afterwards
it makes a call to a Reddit webhook that tells it to fetch the newest state
from the database.




Elaborate Example: Read the Docs

A similar use-case is to public your documentation to the internet. Therefore
we will establish a webhook on Read the Docs. That means our code versioning
system (GitLab) will call the webhook when there are changes.









            

          

      

      

    

  

    
      
          
            
  
Read the Docs

What does Read the Docs do?


	a service that hosts sphinx documentation


	all public repositories are free


	a framework for starting your own documentation server




So here you can find step by step instructions how to publish your documentation
using Read the Docs.


Setup Read the Docs


	Go to https://readthedocs.org/ and create an account.


	Log in and click on your user-name in the upper right corner.


	Click on Import a Project


	Something Manual


	Then fill the following form




[image: ../_images/import_project.png]

	Click on next.




Now you successfully introduced Read the Docs to your repository. On the next
page you see two important things.

On the one hand you can try to build your documentation and on the other hand we
did not establish a webhook so far. Let us start with the build.




Build Documentation

For the build your repository needs to be public. In case it is already public
please continue here.


	Open your repository https://git.tu-berlin.de/your/repo/url
in the browser


	In the bottom left corner click on settings


	Scroll down to the section Visibility, project features, permissions


	Click on the Expand button


	Underneath the heading Project Visibility use the drop down menue to choose
Public


	Scroll down and click save changes




Now your repository can be seen by everybody in the internet, in particular by
the Read the Docs service, so we can start building the documentation.


	Open https://readthedocs.org/ in your browser and log in


	Click on your user-name in the upper right corner.


	Click on your project name


	Click on the Build Version button


	Wait for the build to succeed. It should look like this




[image: ../_images/build_completed.png]

	On the right hand side please click on the button View docs.







Add Webhook

Now we want our documentation to be updated automatically, once a Merge Request
is merged. Therefore we will add a webhook to the repository.


	Open https://readthedocs.org/ in your browser and log in


	Click on your user-name in the upper right corner.


	Click on your project name


	Click on the Admin button


	In the navigation on the left hand side click on Integrations


	Click on the button Add integration


	In the pull down menue select GitLab incoming webhook and click on the
Add integration button


	Now right click on the link that you see and that starts with
readthedocs.org/api/v2/webhook/... to copy it


	Go back to your repository https://git.tu-berlin.de/your/repo/url


	Click on Settings>Webhooks


	Copy the webhook URL to the URL field


	Scroll down and click on Add webhook.










            

          

      

      

    

  

    
      
          
            
  
Doc-Strings


Types of Docstrings

There is different entities that posses docstrings. Take a look at the example
from Wikipedia [https://en.wikipedia.org/wiki/Docstring#Python]:

"""The module's docstring"""

class MyClass:
    """The class's docstring"""

     def my_method(self):
         """The method's docstring"""
         pass

def my_function():
    """The function's docstring"""
    pass





Most entities have a docstring. You can check it via my_entity.__doc__.




Detailed Docstring

You can use it to explain the user how to use your function in more detail:

def addition(arg1, arg2):
    """
    This functions adds the first and the second argument.

    :param arg1: the first summand
    :type arg1:  float
    :param arg2: the second and last summand
    :type arg2:  flaot
    :return:     the sum of both summands
    :rtype:      float
    """
    return arg1 + arg2





Why shall we document the function right in the code?


	documentation is close to the code



	explanation right at hand


	once you change the code you can change the docu right at the same place









	We can still include the docstring into our main documentation







Autodoc

When you stick to the convention above to describe the function arguments, what
the function returns as well as the typing, you can use automatically generated
documentation.

First thing you need to do is to change the conf.py file, to tell Sphinx
that it should use autodoc.

Therefore go to conf.py and append the following string to the extensions
list.

extensions = ['sphinx.ext.autodoc']





Now you can use the autofunction feature by adding the following block to your
documentation.

.. autofunction:: .adding_numbers.addition.addition





Please note that adding_numbers.addition.addition refers to the function
in the same way you would import it. You can see the result here:

Please note that the convention we used here is the one from reStructuredText.
There is other conventions from Google as well as from Numpy that are fairly
common.







            

          

      

      

    

  

    
      
          
            
  
Task 0: Create a new repository

Similar to last two times we want to create a new repository that we use for
this workshop. Please note that we want to create a repository in the group
kiwi-git-workshops [https://git.tu-berlin.de/kiwi-git-workshops].

For step by step instructions on how to create a repository, you can take
a look at the creating a Creating a Repository page.





            

          

      

      

    

  

    
      
          
            
  
Task 1: Readme

Please create a seperate branch for each task and create a
Merge Request every time.
You can find detailed instructions on the Git Workflow page.

TODO (Task 1): Please add a small Readme in the format reStructuredText.
So you should change the file README.rst.

It should contain:


	the repository’s purpose


	an installation guide


	a small snippet how to use the command line interfact




Please keep in mind:


	indention is 3 spaces


	blank lines are important to seperate blocks from each other




After merging your Merge Request you should see your new README.rst at the
landing page of your project
https://git.tu-berlin.de/kiwi-git-workshops/your_project.





            

          

      

      

    

  

    
      
          
            
  
Task 2: Creating Sphinx Documentation

Please create a seperate branch for each of the sub-tasks and create a
Merge Request every time.
You can find detailed instructions on the Git Workflow page.


Setup Sphinx

Please follow this guide [https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html#quick-start]
in order to create a basic documentation.




Landing Page

Now we want to replace the content of index.rst with what we already
used for the Readme.rst.

You can quickly build your documentation locally to check if everything is
rendered accordingly.

cd /your/project/docs
make html

# open the html site in a browser of your choice
firefox _build/html/index.html











            

          

      

      

    

  

    
      
          
            
  
Task 3: Read the Docs

Now we want to publish the documentation, the one file from task 2, to the
internet.  Therefore please follow the steps described in Read the Docs
and apply them to the current repository.





            

          

      

      

    

  

    
      
          
            
  
Task 4: Docstrings

In the last workshop we dealt with a function called invert_image. You can
find it in this package as well

your_package_name.processing.invert_image





Please write a docstring for that function. Here you can find more detailed
instructions on Detailed Docstring.

Once you added a Docstring, please add another file that describes the process
of inverting an image to the documentation. Then use the autofunction feature
to include the Docstring into the documentation.

If you encounter an error like

WARNING: autodoc: failed to import function 'some.module'





make sure that you installed the package into your current enviroment.





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  _images/new_file.png
File Edit View Navigate Code Refactor Run Tools Git Window Help
cookiecutter-git-workshop-basics | i Recipe.md

‘ g Project ~
g (ookle(ul.lgrgl’_ B —
i = -t};x cenop X CUE Cirlix & New Scracch File
_J 2 git workshop o oy Ctrl+c ™ Directory
E Images Python Package
o B {fcookiecuttel Copy ity
AR teste [ paste cerlev & Python File
" {{cookiecut  Find Usages Altsshift+7 us HTMLFile
i %.gitignore  Find in Files... ctrlsshiftsF ** EditorConfig File
wd H LICENSE ~ ReplaceinFiles..  CtrlsshiftsR i Resource Bundle
H s README.I  Inspect Code...
t Asetup.py  Refactor »
@ tox.ini Clean Python Compiled Files
©-gitignore Add to Favorites >
) cookiecutter.
= o Glossarymg  Beformat Code ctri+albsL
- LICENSE Optimizelmports  Ctrl+Alt+O
Makefile Openin >
s README.md Local History »
i Recipe.md Git >
) sample_pictui & Reload from Disk
i External Librari€_+ compare with... ctrlsD
" scratches and c¢ Mark Directory as »
Remove BOM
ﬁ ©) Create Gist..

— iEsetuppy © iclipy

Ctrl+Altsshift+insert

a conci
1ttps://
itructio
te to ex

## Ingredience
PyCharm (ins
6it (install
repository (
Teature idea

R

## Instructions

Once you have 2
to get there.

### Sync Local

First we want t
branch. Therefa
patlock. Then
branches.

Checkout Brar






_images/new_project.png
Create blank project

Create a blank project to house your files, plan
your work, and collaborate on code, among
other things.

New project > Create blank project

Project name
git-workshop-basic]|

Project URL Project slug
https:/gittwberln.de/ch.lange/ gitworkshop-basic

Want to house several dependent projects under the same namespace? Create a group.
Project description (optional)

Description format

Visibility Level @
© & Private

Project access must be granted explicity to each user. If this project s part of a group, access will be granted to members of the group.

@ Internal
The project can be accessed by any logged in user except external users.

@ Public
The project can be accessed without any authentication.

Initialize repository with a README
Allows you to immediately clone this project’s repository. Skip this if you plan to push up an existing repository.

Cancel





_images/merge_request.png
chlange » gitworkshop-basic > Merge Requests

You pushed to basic_description 7 minutes ago






_images/merge_request2.png
New Merge Request

From basic_description into master Change branches

Title basic package description

Start the title with Draft: or WIP: to prevent a merge request that s a work in progress from being merged before it's ready.
Add description templates to help your contributors communicate effectively!

Description Write  Preview B I "< &

**Achieved**
- Ix] add a basic package description to the README

Markdown and quick actions are supported @ Attacha file

Assignee  ch.lange

Reviewer  chlange

Milestone Milestone

Labels  Doing

Merge options Delete source branch when merge request is accepted.
‘Squash commits when merge request is accepted. @





_images/project_setup.png
The repository for this project is empty
You can get started by cloning the repository or start adding fles to it with one of the following options

@ Newfile || B AddREADME || B AddLICENSE || @ Add CHANGELOG || [ Add CONTRIBUTING | | @ Setup CI/CD

Command line instructions

You can also upload existing files from your computer using the instructions below.

Git global setup

git config --global user.name "ch.lange"
git config --global user.email "christoph.lange@tu-berlin.de"

Create a new repository

git clone git@git.tu-berlin.de:ch.lange/git-workshop-basic.git
cd git-workshop-basic

touch README.md

git add README.md

git commit -m "add README"

git push -u origin main

Push an existing folder

cd existing_folder
git init
git remote add origin git@git.tu-berlin.de:ch.lange/git-workshop-basic.git
git add .
git commit -m "Initial commit"

push -u origin main

cd existing_repo
git remote rename origin old-origin

git remote add origin git@git.tu-berlin.de:
git push -u origin
git push -u origin

h.lange/git-workshop-basic.git






_images/questions.png
(tmp1) christoph@christoph-Thinkpad-p53i~/letter to_uncle/tmp$ cookiecutter https://github.com/spirousschuh/cookiecutter-git-workshop-basics
You've downloaded /home/christoph/.cookiecutters/cookiecutter-git-workshop-basics before. Is it okay to delete and re-download it? [yes]: yes
author_name [Josephine Doe]: Christoph
author_email [your@address.eu]: mail@to.me
package_name [git_workshop_basic]: my_image_package
package_description [A lightweight python package to practise some git]: This package does simple image manipulations
package_url [https://git.tu-berlin.de/you/your_repo_name]: https://git.tu-berlin.de/ch.lange/my_image_package

(tmp1) christoph@christoph-ThinkPad-P53:~/letter_to_uncle/tmp$ [l






_static/file.png





_static/minus.png





_images/git_pull.png
File Edit
cookiecutter-git-workshop-basics i Recipe.md

g = project + 2 Push... ctrhshurtln( I 2 ReADME
Ctrl+T
H cookiecutter-git-workshop-basics ~/qit_projects sB T I O
- tox Fetch # Rec.
. basic_from_github etd
£ git_workshop_basic 7. Merge... 14
s {icookiecutter.package_name}} Rebase...
< Lests P Branches..  Ctrlsshifts This
2 % test_clipy New Branch... Lhere
g {{cookiecutter.package_name}} New Tag... Tind
g init__py © Reset HEAD... feel
] % cli .
2 > cl-py i Show Git Log i In
t % .gitignore . N s
LICENSE Uncommitted Changes  » * 61
#ix README.md Selected File » % re
% setup.py
i » * e
tox.ini GitHub
4 gitignore Manage Remotes... .
 cookiecutter json Clone...
i Glossary.md VCs Operations Al once
LICENSE to ge

Makefile
% README.md wn





_images/git_push.png
File Edit View Navigate Code Refactor Run Tools [feig Window Help
cookiecutter-git-workshop-basics | i Recipe.md

i = Project ~
2 kiecutter-git-workshop-basics ~/git_projects guECateHied s
£ cooklecutter-git-workshop-basics ~/qit_proj pull..
- tox
. qit_workshop_basic GEZD
€ images 7 Merge.
S # add_to_git.png Rebase.
= # checkout_branch.png Branches... ctrlsshifes
o # create_new_branch.png New Branch...
g # git_pullpng New Tag...
H & new _file.png © Reset HEAD...
3 & new_project.png I+ Show Git Log
I {{cookiecutter.package_name}} Patch >
Lests uUncommitted Changes >
{{cookiecutter.package_name}} pe——— .
% gitignore =
£ LICENSE GitHub »
& README.md Manage Remotes...
% setup.py Clone..
= tox.ini VCS Operations Alt+





_images/create_new_branch.png
Git Branches in cookiecutter-gitwor...

New Brangh
Checkout Tag or Revision...

Local Branches
© main origin/main >
Remote Branches

origin/main






_images/final_merge.png
basic package description

Overview 0 Commits 1 Changes 1

Achieved

add a basic package description to the README

19 Requesttomerge basic description [ intomaster

B | Revoke approval | Merge request approved. Approved by &
©) Delete source branch

> 1 commit and 1 merge commit il be added to master. Modify merge commit

Open in Web IDE

Check out branch





_images/import_project.png
E Read the

Project Details

To import a project, start by entering a few details about your repository. You can set additional configuration
options for your documentation in a readthedocs.ymi file.

Name:

Awesome_project m

Repository URL:
https://git.tu-berlin.de/c

Hosted documentation repository URL

Repository type:
6it 1
Default branch:
master

What branch “latest" points to. Leave empty to use the default value for your VCS (eg. trunk or master).

Edit advanced project options:

Next





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Git Workshop Part 3 on Documentation!
        


        		
          Creating a Repository
          
            		
              Create Project on GitLab
            


            		
              Use Project Template
            


            		
              Sync Local and Remote Repository
            


          


        


        		
          Git Workflow
          
            		
              Idea
            


            		
              Instructions
              
                		
                  Update Local
                


                		
                  Create Branch
                


                		
                  Add Commits
                


                		
                  Push Branch
                


                		
                  Merge Request
                


                		
                  Discussion
                


                		
                  Merge Branch
                


              


            


          


        


        		
          Documentation 101
          
            		
              Readme
              
                		
                  Content
                


                		
                  Purpose
                


              


            


          


        


        		
          RestructuredText
          
            		
              Example
              
                		
                  Features
                


                		
                  Installation
                


              


            


            		
              Idea
            


            		
              Properties
            


          


        


        		
          Sphinx
          
            		
              Why shall we use it?
            


            		
              Quick Start
            


            		
              Example
            


          


        


        		
          Continuous Deployment
          
            		
              Idea
            


            		
              Purpose
            


            		
              Webhook
              
                		
                  Simple Example
                


                		
                  Elaborate Example: Read the Docs
                


              


            


          


        


        		
          Read the Docs
          
            		
              Setup Read the Docs
            


            		
              Build Documentation
            


            		
              Add Webhook
            


          


        


        		
          Doc-Strings
          
            		
              Types of Docstrings
            


            		
              Detailed Docstring
            


            		
              Autodoc
            


          


        


        		
          Task 0: Create a new repository
        


        		
          Task 1: Readme
        


        		
          Task 2: Creating Sphinx Documentation
          
            		
              Setup Sphinx
            


            		
              Landing Page
            


          


        


        		
          Task 3: Read the Docs
        


        		
          Task 4: Docstrings
        


      


    
  

_images/build_completed.png
Build #13103192 Completed Feb. 25, 2021. 11:24 am.

latest (2b66e4a8f7dd7ac7aabf5232866a915542b6cb12) Bulld fook 34 seconce
View docs

View raw

git clone --no-single-branch --depth 50 https://github.com/spirousschuh/cookiecutter-git-v

git checkout --force origin/master
git clean -d -f -f

python3.7 -mvirtualenv /home/docs/checkouts/readthedocs.org/user_builds/git-workshop-docur





_images/checkout_branch.png
New Branch frorh Selected...
Checkout and Rebase onto Current

Comparewith Current GitBranches in cookiecutter-gitwor... S
'Show Diff with Working Tree Q
+New Branch
Rebase Current onto Selected Checkout Tag or Revision..
Mergeinto Current
Local Branches
Update . create-tasks »
Push...
Rename... Remote Branches

Delete L origin/main »





_images/add_to_git.png
Add File to Git

Do you want to add the following file to Git?
~/git_projects/cookiecutter-git-workshop-basics/Tasks.md

IFyou choose Cancel, you can still add it later manually.

Don'task again Cancel






